PACE title

NASA Sets the PACE for Advanced Studies of Earth's Ocean and Atmosphere

PACE's advanced technologies will provide unprecedented insight into Earth's ocean and atmosphere, which impact our everyday lives by regulating climate and making our planet habitable. Our oceans teem with life, supporting many of Earth's economies. New discoveries in Earth's living ocean will be revealed with PACE's global observations, such as the diversity of organisms fueling marine food webs and how ecosystems respond to environmental change. PACE will observe our atmosphere to study clouds along with the tiny airborne particles known as aerosols. Looking at the ocean, clouds, and aerosols together will improve our knowledge of the roles each plays in our changing planet.

PACE's data will reveal interactions between the ocean and atmosphere, including how they exchange carbon dioxide and how atmospheric aerosols might fuel phytoplankton growth in the surface ocean. Novel uses of PACE data – from identifying the extent and duration of harmful algal blooms to improving our understanding of air quality – will result in direct economic and societal benefits. By extending and expanding NASA's long record of satellite observations of our living planet, we will take Earth's pulse in new ways for decades to come.

Phytoplankton illustrations Phytoplankton illustrations

Why Do We Need PACE?

Our ocean is teeming with life and many of its most vital species are invisible to us.

Like on land, the ocean has deserts, forests, meadows, and jungles that provide homes for grazers, predators, scavengers and plants. This diversity of ecosystems is determined by microscopic oceanic vegetation – phytoplankton. These tiny plant-like organisms come in many different shapes, sizes, and colors. Phytoplankton diversity determines their role in oceanic ecosystems and their success in capturing energy from the sun and carbon from the atmosphere.
Phytoplankton provide food for small zooplankton. Like humans, these grazers actively select their food. Similarly, larger zooplankton hunt for and feed upon nutritious smaller zooplankton. Step by step, energy captured from phytoplankton climbs higher into the food web as it transfers to bigger creatures, and ultimately to humans.

Although the ocean is a three-dimensional fluid that is constantly in motion, it supports distinct habitats. The North Atlantic is home to highly productive "forests" each spring, for example, as blooms of carbon-rich phytoplankton fuel the fisheries of New England. The crystalline waters around Florida host productive coral reefs and fisheries, but also occasionally toxic phytoplankton.

Current ocean-viewing satellites reveal the quantity - but, not the diversity - of phytoplankton. For the first time, PACE's unprecedented imaging technology will:
  • Reveal the diversity of phytoplankton found in our ocean on global scales;
  • Allow us to understand the role that phytoplankton diversity has on life in the ocean; and
  • Help us predict the “boom or bust” of fisheries, appearance of harmful algal blooms, and other marine hazards that affect local and global economies.
Why do we need PACE? To understand how phytoplankton diversity impacts human life.
Carbon cycle
Small particles suspended in the atmosphere (aerosols) and clouds are the largest sources of uncertainty in our understanding of how much sunlight is being reflected and absorbed by the Earth and its atmosphere. Complex interactions between clouds and aerosols in which cloud drops form on aerosols and aerosols are themselves washed out of the air by rain are not well understood. Adding complication, many different types of aerosols — for example, smoke, dust, salt and sulfate — absorb and reflect different fractions of sunlight. Clouds, aerosol types and their interactions vary substantially both geographically and with time. Thus, only global Earth-observing satellite measurements can capture a complete and accurate picture of how much energy from the sun our home planet is absorbing. PACE will continue and expand NASA's global cloud and aerosol observations in order to better understand their role in controlling our climate.
Aerosol data will not only benefit atmospheric science but ocean science, as well. Retrieving ocean color information is challenging because 90% or more of the signal observed by PACE will be contributed by the atmosphere, including aerosols, situated between the ocean and satellite.  We must therefore have strong knowledge of the atmosphere, and understand the aerosols present in a scene, for PACE to accurately "see" the ocean.

Aerosols and clouds control the amount of energy from the sun that is absorbed by the earth. PACE will:
  • Globally determine aerosol quantity, and provide new insight into aerosol properties;
  • Monitor cloud properties, and the interaction between aerosols and clouds; and therefore
  • Observe fundamental components of our global climate.
Carbon cycle
Carbon exists in forms that range from invisible gases to diamonds to the organic matter that forms all living organisms. In the ocean, a system of physical and biological processes drives transitions between forms of carbon, which ultimately supports life on this planet and regulates our livable environment. Through photosynthesis, marine phytoplankton convert carbon dioxide gas into organic cellular material that supplies food and energy to all life forms within the food web. Through other mechanisms within this web, carbon can also adopt other forms; for example, it can be returned to the atmosphere as carbon dioxide through respiration or sink deep into the ocean as non-living particles.
In many ways, phytoplankton diversity dictates carbon pathways on Earth. Like falling leaves in autumn, larger phytoplankton species can sink from the ocean surface to the sea floor, effectively removing carbon from contact with the atmosphere. Many species of phytoplankton provide nutritious food sources for larger zooplankton. The carbon captured by zooplankton is partially returned to the atmosphere through respiration and partially exported to the deep ocean during nighttime migration and excretion. In addition, many zooplankton release partially ingested carbon in the form of dissolved material. Marine bacteria, another type of plankton, use this dissolved carbon as an energy source, ultimately transitioning it back into its gaseous form.

As illustrated above, carbon pathways are many and diverse – even small disturbances in an oceanic ecosystem can push carbon towards an alternate route. Seeing the diversity of planktonic life is critical to understanding how carbon moves to and from the ocean and atmosphere.

Current ocean-viewing satellites reveal the quantity - but not the diversity - of phytoplankton. For the first time, PACE's unprecedented imaging technology will:
  • Reveal the diversity of phytoplankton found in our ocean on global scales;
  • Allow us to understand the role that phytoplankton diversity has on cycling of carbon in the ocean; and
  • Help us predict the routes that carbon will take in today's ocean and tomorrow's.
The PACE mission will provide a combination of global atmospheric and oceanic observations to benefit society in the areas of water resources, impact of disasters, ecological forecasting, human health, and air quality.

PACE Applications will partner with public and private organizations on ways to apply data from PACE and its scientific findings in their decision-making activities and services, helping to improve the quality of life and strengthen the economy.

Understanding Earth Together e-brochure
PACE observations will benefit a broad spectrum of people, including:
  • Operational users in various tribal, local, state, federal, and international agencies
  • Policy implementers
  • Commercial sector
  • Scientists
  • Educators
  • General public
The U.S. ocean economy contributes over $350B to the GDP (2014) and supports more than 3.1 million jobs (one in 45). Currently, this ocean economy, including the Great Lakes, is growing faster than the total U.S. economy in both contributions to inflation-adjusted GDP (15.6% since 2007 compared to 5.8%) and jobs (8.1% compared to flat).

PACE will be the first mission to provide measurements that enable prediction of the boom-bust of fisheries, the appearance of harmful algae, and other factors that affect commercial and recreational industries. While current satellites provide essential tools for monitoring the ocean, coasts, and Great Lakes, they cannot effectively be used to evaluate changes to fisheries or identify harmful algae. Without PACE, we will continue to be blind to the impacts of diversity changes in our marine resources.
PACE will also observe clouds and microscopic airborne particles known as aerosols that scatter and absorb sunlight. Industry, the Department of Defense, NOAA, policy makers, and scientists all rely on these key data for weather, visibility, and air quality forecasts. Observing the ocean, clouds, and aerosols together will reveal previously unseen interactions, including their exchange of carbon dioxide, how some aerosols can fuel phytoplankton blooms, and how phytoplankton can release particles to the atmosphere that lead to the formation of clouds. These processes affect how much heat is trapped by Earth's atmosphere and are vital to accurately predict weather and climate.

Example PACE user communities:
  • Natural and coastal resource managers focused on water quality for human health, commercial fishing, and disaster management
  • Researchers and Earth modelers in the fields of ocean biology-ecology-biogeochemistry, atmospheric aerosols, and clouds
  • Military users of ocean optical data for environment characterization and clouds and aerosol data for weather and visibility forecasts for regions of operations
  • Government agencies who will use this data to manage fisheries and to determine human health predictors including air and water quality
  • Renewable energy and commercial sectors with interest in environmental technology development, resources management tools, and environmental forecasting
  • Educators of the general public
  • Policy makers and economists at local, state, regional, tribal, federal, and international levels
Download PDF to learn more.
Question mark
  • How is Earth changing and what are the consequences for our living resources and food webs, such as phytoplankton and plankton?
  • What is the concentration and composition of organisms in our ocean ecosystems? How productive are our ocean ecosystems?
  • What are the long-term changes in aerosol and cloud properties that can be continued to be revealed with PACE? How are these properties correlated with variations in climate?
  • How are biological, geological, and chemical components of our ocean changing and why? How might such changes influence the Earth system?
  • What materials are exchanged between the land and ocean? How do these exchanges affect life on our coasts?
  • How do tiny airborne particles and liquids – known as "aerosols" – influence ocean ecosystems and cycling of matter in our ocean?
  • Conversely, how do ocean processes affect our atmosphere?
  • How does our ocean's environment – and motion – affect its ecosystems and vice versa?
  • What is the distribution of both harmful and beneficial algal blooms? How are these blooms related to environmental forces?
  • How do changes in critical ocean ecosystem services affect people's health and welfare? How do human activities affect ocean ecosystems and services?


PACE will be NASA's most advanced global ocean color and aerosol mission to date


PACE will add to climate data records while unveiling new insights on life in our ocean


PACE will add value to our everyday lives (e.g., Harmful Algal Bloom forecasts)

Field Campaigns

Ship and airborne studies being conducted worldwide are setting the stage for PACE

Learn More
Brochure cover: What Color is the Ocean?
Activity cover: Building Intuition for In-water Optics and Ocean Color Remote Sensing

Social Media


NASA studies the ocean and its role supporting life on Earth, providing ocean color, sea surface temperature and sea surface salinity data and images.


Your planet is changing, and we're on it. NASA uses the vantage point of space to increase our understanding of Earth and improve lives.