An Accurate Absorption-Based Net Primary Production Model for the Global Ocean

Greg Silsbe
Horn Point Laboratory, UMCES

Mike Behrenfeld, Kim Halsey, Allen Milligan & Toby Westberry
Oregon State University
Ocean Color Remote Sensing: Science & Challenges

Ocean Color \((R_{RS}(\lambda)) \) \[\rightarrow\] Net Phytoplankton Production (NPP) Growth Rates (\(\mu \))

![Graph showing the relationship between Ocean Color and Net Phytoplankton Production](image-url)
NPP Models

- Most published NPP models use Chl a as their central metric of phytoplankton biomass.
- Disparate changes in cellular Chl:C in response to light and nutrients confound a direct relationship between Chl a and NPP.

NPP Models

- Spectral inversion algorithms now permit retrievals of Inherent Optical Properties (IOPs) from space (Lee et al. 2002; Maritorena et al. 2002; Werdell et al. 2013).

- The Carbon, Absorption, Fluorescence and Euphotic-Resolved (CAFE) model framework seeks to incorporate these products into a mechanistic model of NPP and μ.
Phytoplankton Absorption Coefficient \((\alpha_\phi) \): The New Chlorophyll

- The phytoplankton absorption coefficient \((\alpha_\phi) \) represents the sum of the product of all photosynthetic and non-photosynthetic pigments and the specific absorbance in-vivo.
Model Parameterization

Absorption Model: \(NPP = E(\lambda) \times a_{\phi}(\lambda) \times \phi_{\mu} \)

Carbon Model: \(NPP = C_{Phyto} \times \mu \)

Combined Eqs: \(\mu = E(\lambda) \times a_{\phi}(\lambda) \times \phi_{\mu} / C_{Phyto} \)

Where: \(E(\lambda) \) is spectral extrapolation of PAR

\(C_{Phyto} \) is derived from Graff et al. (2015)

\(a_{\phi}(\lambda), b_{bp}(\lambda) \) are from the GIOP-DC

\(\phi_{\mu} \) is the quantum efficiency of growth

Model Parameterization

\[\phi_\mu = \phi_\mu^{\text{max}} \times \tanh\left(\frac{E_K}{E}\right) \]
Model Parameterization: E_K

Other absorption-based models:

- E_K is globally constant at 116 mmol m\(^{-2}\) s\(^{-1}\) (Marra et al. (2007))
- E_K varies with sea-surface temperature (SST) (Antione and Morel 1996; Smyth et al. 2005)

CAFE Model:

- E_K varies with Growth Irradiance (Behrenfeld et al. 2015)
Model Parameterization - E_K

A) E_K Annual Climatology

C) E_K seasonality in select regions

Optical Model

SST Model

NPT Optical Model SST Model

NAT

NPG

NAG

SPG
Other absorption-based models:

- ϕ_{μ}^{Max} is globally constant: 0.060 mol C (mol photons)$^{-1}$ (Smyth et al. 2005; Marra et al. 2007)
- ϕ_{μ}^{Max} is globally variable: 0.058 ± 0.038 mol C (mol photons)$^{-1}$ (Antione and Morel 1996)
Model Parameterization: ϕ^max_μ

Other absorption-based models:

- ϕ^Max_μ is globally constant: 0.060 mol C (mol photons)$^{-1}$ (Smyth et al. 2005; Marra et al. 2007)
- ϕ^Max_μ is globally variable: 0.058 ± 0.038 mol C (mol photons)$^{-1}$ (Antione and Morel 1996)

Model Parameterization: ϕ_{μ}^{max}

Other absorption-based models:

- ϕ_{μ}^{Max} is globally constant: $0.060 \text{ mol C (mol photons)}^{-1}$ (Smyth et al. 2005; Marra et al. 2007)
- ϕ_{μ}^{Max} is globally variable: $0.058 \pm 0.038 \text{ mol C (mol photons)}^{-1}$ (Antione and Morel 1996)

Model Parameterization: ϕ^m_{μ}

Other absorption-based models:

- ϕ^M_{μ} is globally constant: 0.060 mol C (mol photons)$^{-1}$ (Smyth et al. 2005; Marra et al. 2007)
- ϕ^M_{μ} is globally variable: 0.058 ± 0.038 mol C (mol photons)$^{-1}$ (Antione and Morel 1996)

Model Validation: ϕ_{μ}^{max}

Light-limited cultures

Nitrogen-limited cultures

Model Climatology

Global NPP estimated from MODIS monthly climatology is 53.8 Pg C year⁻¹
Model Validation – PPARR Approach

- CAFE NPP model results were tested against in-situ NPP measurements at 10 sites (n=1048)
- Data and methods follow PPARR4 (Saba et al. 2011)

<table>
<thead>
<tr>
<th>Metadata</th>
<th>Chl</th>
<th>PAR</th>
<th>SST</th>
<th>MLD</th>
<th>NPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATS</td>
<td>0.097</td>
<td>17.8</td>
<td>21.78</td>
<td>83.26</td>
<td>218.98</td>
</tr>
<tr>
<td>BATS</td>
<td>0.096</td>
<td>29.38</td>
<td>20.88</td>
<td>123.05</td>
<td>306.06</td>
</tr>
<tr>
<td>BATS</td>
<td>0.207</td>
<td>32.16</td>
<td>20.01</td>
<td>125.13</td>
<td>799.44</td>
</tr>
</tbody>
</table>
Model Validation – PPARR Approach

$$RMSD = \left(\frac{1}{n} \sum_{i=1}^{n} \Delta(\log_{10} NPP_{mod} - \log_{10} NPP_{obs})^2 \right)^{0.5}$$

$$Bias = \text{mean}(\log_{10} NPP_{mod}) - \text{mean}(\log_{10} NPP_{obs})$$
Model Validation – PPARR Approach

[Map and graphs showing validation results for different regions and models.]
Model Validation – Direct Satellite Measurements

Hawaii Ocean Time Series

- Measured
- CAFE Model

NPP (mg C m⁻² d⁻¹)

HOT 45 meters

HOT 100 meters

NPP (mg C m⁻³ d⁻¹)

Date

2006 2007 2008 2009 2010 2011 2012
Future Directions

• Most phytoplankton biomass is hidden from satellite measurements of ocean color.
• BIO-Argo profiles can help fill in this missing data
Future Directions

• Hyperspectral ocean color data (e.g. PACE) will provide improved derivation of IOPs, potentially allowing for taxonomic discrimination from space
Acknowledgements

NASA: The Science of Terra and Aqua

Questions?