The SPEXone polarimeter for the NASA PACE mission

Otto Hasekamp, Jeroen Rietjens, Guangliang Fu, Lianghai Wu, Martijn Smit, Jochen Campo, Joost aan de Brugh, Raul Laasner, Richard van Hees, Jochen Landgraf, Aaldert van Amerongen
Multi-angle spectropolarimetry between 385 – 770 nm

5 instantaneous footprints; Simultaneous pushbroom measurement of radiance and polarization

Flight direction
5 instantaneous footprints; Simultaneous pushbroom measurement of radiance and polarization.

Multi-angle spectropolarimetry between 385 – 770 nm

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial resolution / sampling</td>
<td>5X5 km² (2.5X2.5 km²)</td>
</tr>
<tr>
<td>Spectral resolution radance</td>
<td>400 bands, 2nm FWHM</td>
</tr>
<tr>
<td>Spectral resolution polarization</td>
<td>50 bands λ/FWHM = 35 O2 a band at 2 nm FWHM (TBC)</td>
</tr>
<tr>
<td>Radiometric uncertainty</td>
<td>< 2%</td>
</tr>
<tr>
<td>Polarimetric uncertainty</td>
<td>< 0.003</td>
</tr>
</tbody>
</table>
$S_+ (\lambda) = 0.5 I (1+m_q (\lambda) q(\lambda) + m_u (\lambda) u(\lambda))$

$S_- (\lambda) 0.5 I (1- m_q (\lambda) q(\lambda) - m_u (\lambda) u(\lambda))$

$S_{\text{mod}} (\lambda) = (S_+ - S_-) / (S_+ + S_-) = m_q (\lambda) q(\lambda) + m_u (\lambda) u(\lambda)$
Past Weeks:
• April 24: Spectrometer and telescope integrated
• May 13: DEM integrated
• May 15: DEM Pre-aligned: results promising
• May 28: OSF delivered to SRON

• June 2: OSF integrated with DEM assembly
 • Note: assumption is that inclusion of OSF has no significant effect on alignment
• June 19: Instrument fully integrated and aligned
• July / August: Testing (EMC, vibration, shock, thermal)
• October-December: On-ground calibration

Milestone planning:
- PDR: November 2018
- EPR-2: December 17th 2018
- CDR: February 7th 2019
- SIR: October 21st 2019
- PER: May 26th 2020
- DRB: Q1- 2021
Telescope functional test

Telescope integration with spectrometer

First spectrum

Spectrometer and DEM integrated
Performance Modeling

SNR for dark ocean at SZA = 70°

For most challenging case factor 10 correction is needed. For the vast majority a factor 5 is sufficient.
Level-1 Processing: Test with instrument model

Steps:
- Detector calibration.
- Stray light correction.
- Field of view calibration.
- Spectral calibration.
- Radiometric Calibration.
- Polarimetric Calibration.
SPEXone level-2 Processing (SRON)

Aerosol

<table>
<thead>
<tr>
<th>Heritage</th>
<th>POLDER-3 (global) processing and forcing quantification, airborne data of SPEX airborne, RSP, airMSPI, groundSPEX. TROPOMI operational L2 processor (CH4).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
<td>Online RT, 1st guess from LUT retrieval, retrieves size, spectral dependent refractive index (base functions), shape, ALH. Flexible state vector definition. Land: fit BDRF parameters (Ross-Li or RPV + Fresnel), ocean: Fresnel reflection on waves (wind-speed+direction), ocean body based on X_chla. Pixel level uncertainty calculation. Aerosol-above-cloud. Multi-instrument retrievals.</td>
</tr>
<tr>
<td>Computational aspects</td>
<td>3-4 seconds (35 wavelengths) /pixel/thread. Parallel processing (openMPI).</td>
</tr>
<tr>
<td>Synthetic test data</td>
<td>ECHAM-HAM +POLDER aerosol data, MODIS+GOME-2+POLDER BRDF, SPEXone orbit simulator</td>
</tr>
<tr>
<td>Developments</td>
<td>Test advanced ocean body models, effect of cirrus, use of O2-a band. Collaborate with PACE SAT PIs to include findings in SPEXone processor, e.g. cirrus (Stamnes), UV ocean model and Brown Carbon (Chowdhary). Harmonize with MAP-CO2M developments.</td>
</tr>
<tr>
<td>Documentation</td>
<td>ATBD (issue 1 July 2020)</td>
</tr>
</tbody>
</table>

Clouds

Collaborate with van Diedenhoven (PACE SAT PI)

SPEXone synthetic retrievals (SSA)

SPEX airborne AOD

Team: Guangliang Fu, Lianghai Wu, Sha Lu, Jochen Landgraf, Otto Hasekamp
Synthetic orbits (71360 pixels/each orbit, ~1 Million per day)

- Aerosol size distribution, height, and composition from ECHAM-HAM.
- AOD and surface polarization from POLDER-3.
- Cloud mask, BDRF and Chl$_a$ from MODIS
- Geometries from orbit simulator.
In-Flight Calibration/monitoring Approach

Radiometric:
- Comparison to OCI at +/- 20° and 0°
- Deep Convective Clouds (DCC) to translate to +/- 50° viewports

Polarimetric
- Polarimetric zero-point using thick clouds at scattering angles 160-180°
- Polarimetric scaling factor using sun-glint.
(Note that instrument is designed to stay well within polarimetric requirements for expected pollution levels and vibration/shock)