Cloud products from the PACE Ocean Color Imager
PI: Kerry Meyer (NASA GSFC); Co-I: Odele Coddington (U. Col.)

Funded Activities*:
- Using Generalized Nonlinear Retrieval Analysis (GENRA) [Coddington et al., 2017] as a guide, investigate approaches for cloud thermodynamic phase classification using OCI
 - Thermodynamic phase (liquid, ice, mixed/unknown) is a critical first step in retrievals of cloud properties
 - Spectral scattering/absorption properties of liquid and ice differ substantially, with implications on retrievals relying on realistic forward radiative transfer calculations (optical properties, possibly cloud height)
 - PACE OCI uniquely offers three SWIR channels having sensitivity to cloud thermodynamic phase: 1613, 2130, 2260nm
- Explore phase algorithm methodologies (e.g., decision tree, voting scheme, machine-learning, etc.)
 - Requires extensive cloud forward RT modeling, as no A-Train sensor compliment is equipped with the three OCI SWIR channels

*Terra MODIS
25 May 2020
R: 0.47µm
G: 1.64 µm
B: 2.13 µm

Spectral TOA reflectance for liquid (blue) and ice (red) clouds in the SWIR for clouds having the same optical thickness; differences indicate that reflectance observations in this spectral region have information content for cloud thermodynamic phase.

*Current understanding; definitive guidance not yet received. These activities were tightly integrated with unfunded retrieval work (cloud mask, O_2 A-band height, optical properties).