A Net Primary Production (NPP) algorithm for application to PACE OCI

Toby Westberry (PI), Mike Behrenfeld (Co-I), Jason Graff (Co-I)

Goal: To deliver a launch-ready NPP algorithm that capitalizes on the hyperspectral retrievals of the PACE Ocean Color Instrument (OCI). Focus on three tasks:

1. Use of retrieved hyperspectral phytoplankton absorption, $a_{ph}(\lambda)$
 - absorption $>>$ Chl
 - Several inversions for $a_{ph}(\lambda)$ from PACE SAT

2. Use of retrieved hyperspectral particulate backscattering, $b_{bp}(\lambda)$
 - γ_{bbp} can be related to PSD and PCC
 - $b_{bp}(\lambda)$ and γ_{bbp} can be used to estimate C_{phyto}

3. Use of hyperspectral resolution around the chlorophyll fluorescence emission region (~650-750 nm)
 - Improve FLH via dynamic baseline correction
 - Use FLH to correct for iron stress effect on NPP
 - Investigate better ways to quantify fluorescence

* We will also provide estimates of phytoplankton biomass (C_{phyto}) and growth rate (μ)

“PACE-analog” field dataset will be used for algorithm development and validation

<table>
<thead>
<tr>
<th>Cruise</th>
<th>Region</th>
<th>PACE-analog properties</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAAMES</td>
<td>N. Atlantic</td>
<td>$a_{ph}(\lambda)^1, b_{bp}(\lambda)^2, R_{ys}(\lambda)$</td>
<td>NPP, μ^1, C_{phyto}^4, LISST, CC, IFCB</td>
</tr>
<tr>
<td>EXPORTS</td>
<td>N. Pacific</td>
<td>$a_{ph}(\lambda)^1, b_{bp}(\lambda)^2, R_{ys}(\lambda)$</td>
<td>NPP, μ^1, C_{phyto}^4, LISST, CC, IFCB</td>
</tr>
<tr>
<td>SABOR</td>
<td>N. Atlantic</td>
<td>$a_{ph}(\lambda)^1, b_{bp}(\lambda)^2, R_{ys}(\lambda)$</td>
<td>NPP, μ^6, C_{phyto}^4, LISST, CC, IFCB</td>
</tr>
<tr>
<td>TAO 2012</td>
<td>Tropical Pacific</td>
<td>$a_{ph}(\lambda)^1, b_{bp}(\lambda)^2, R_{ys}(\lambda)$</td>
<td>NPP, μ^6, C_{phyto}^4, CC</td>
</tr>
<tr>
<td>AMT-22</td>
<td>N. & S. Atlantic</td>
<td>$a_{ph}(\lambda)^1, b_{bp}(\lambda)^2, R_{ys}(\lambda)$</td>
<td>NPP, μ^6, C_{phyto}^4, CC</td>
</tr>
</tbody>
</table>

WETLabs – Laser In-situ Scattering and Transmission instrument
1 WETLabs AC-S and filter-pad measurements
2 WETLabs ECO BB3 & WETLabs ECO BB9
3 From dilution experiments [Landry & Hassett, 1982]
4 Graff et al. (2015)
5 WETLabs ECO BB9 & HOBILabs Hydroscat
6 Estimated from cell cycle analysis [Carpenter et al., 1998]