Next generation algorithms based on PACE capabilities to obtain inherent optical properties of seawater associated with phytoplankton, nonalgal particles, and colored dissolved organic matter

Dariusz Stramski (PI) Scripps Institution of Oceanography
Rick A. Reynolds (Co-I) University of California San Diego
Matthew Kehrli (Graduate Student)
Ishan Joshi (Postdoctoral Researcher)

Contributors / collaborators in France
Hubert Loisel Laboratoire d’Océanologie et de Géosciences, Wimereux, France
Cédric Jamet
Daniel Jorge

NASA PACE Science and Applications Team Meeting; 6 – 8 October 2021
I. Task I. Refine K_d algorithm (French team)

- Input: $R_{rs}(\lambda)$ → Outputs: $\langle K_d(\lambda) \rangle$ + Nine IOPs
- Weakly restrictive assumptions (e.g., spectral shapes)
- Refine inverse reflectance model
- Refine and develop new absorption partitioning models
- Quantify uncertainties

II. Next tasks:

- New Neural Network K_d algorithm
- Hyperspectral capabilities
- Extend to the UV

III. 3-step Semi-Analytical Algorithm (3SAA)

- Input: $R_{rs}(\lambda)$
- Outputs: $\langle K_d(\lambda) \rangle$ + Nine IOPs
- Weakly restrictive assumptions (e.g., spectral shapes)
- Refine inverse reflectance model
- Refine and develop new absorption partitioning models
- Quantify uncertainties

- Effect of solar angle
- Synthetic IOP dataset
- Radiative-transfer synthetic dataset

- New Neural Network K_d algorithm
- Hyperspectral capabilities
- Extend to the UV

- Step 1
 - Refined LS2 model with a new $K_d(\lambda)$ algorithm
 - Inverse reflectance model
 - $R_{rs}(\lambda)$

- Step 2
 - Refined ANW2013 model
 - $K_d(\lambda)$
 - ANW new model

- Step 3
 - Refined ADG2019 model
 - Inverse absorption partitioning models
 - $K_d(\lambda)$

- Improved K_d (VIS range)

- Reference (“true”) $<K_d>_{1}$ (m$^{-1}$)

- Model-derived $<K_d>$, (m$^{-1}$)

- Synthetic IOPs

- black: satellite-derived
- gray: synthetic

- blue: w/o solar angle
- red: w/solar angle

- Synthetic IOPs
Cruise(s) Region

<table>
<thead>
<tr>
<th>Cruise(s)</th>
<th>Region</th>
<th>$N(a_g)$</th>
<th>$N(a_{dp}, a_{ag}, a_{ap})$</th>
<th>$N(a_{dp}, a_{ag}, a_{ap})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOSOPE</td>
<td>S. Pacific</td>
<td>31</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gp1-06-ka, gp5-05-ka, gp5-06-ka</td>
<td>Tropical Pacific - Hawaii</td>
<td>292</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A16S, I851N</td>
<td>S. Atlantic, Indian Ocean</td>
<td>91</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HLY0803</td>
<td>Bering Sea</td>
<td>26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AMMA-RB-06</td>
<td>Equatorial Atlantic</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MALINA</td>
<td>Beaufort Sea</td>
<td>60</td>
<td>65</td>
<td>53</td>
</tr>
<tr>
<td>CV1, CV2, CV4, CV5, CV7</td>
<td>U.S.A. E. Coast</td>
<td>357</td>
<td>115</td>
<td>93</td>
</tr>
<tr>
<td>HLY1001, HLY1101</td>
<td>Chukchi Sea</td>
<td>76</td>
<td>75</td>
<td>71</td>
</tr>
<tr>
<td>PC1301</td>
<td>U.S.A. E. Coast</td>
<td>25</td>
<td>35</td>
<td>24</td>
</tr>
<tr>
<td>GOMEX, 2013</td>
<td>Gulf of Mexico</td>
<td>87</td>
<td>101</td>
<td>75</td>
</tr>
<tr>
<td>P16S</td>
<td>S. Pacific</td>
<td>44</td>
<td>43</td>
<td>31</td>
</tr>
<tr>
<td>BATS311a, BATS312</td>
<td>Bermuda</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NAAMES NA1, NA2, NA3, NA4</td>
<td>N. Atlantic</td>
<td>37</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cyaneate 2016</td>
<td>U.S.A. E. Coast</td>
<td>7</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>KR_2016</td>
<td>Korean Peninsula</td>
<td>61</td>
<td>57</td>
<td>40</td>
</tr>
<tr>
<td>Mirai17</td>
<td>Chukchi Sea</td>
<td>22</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>EXPORTS Process, Survey</td>
<td>N. Pacific</td>
<td>63</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1294</td>
<td>536</td>
<td>409</td>
</tr>
</tbody>
</table>

ANW new model formalism developed:

$$a_{nw}(\lambda) = a_{ph}(\lambda) + a_{dg}(\lambda); \quad a_{dg}(\lambda) = f[a_{ag}(\lambda)]; \quad a_{ph}(\lambda) = a_{nw}(\lambda) - a_{dg}(\lambda)$$

Library of spectral shapes (\tilde{a}_{dg}) and multiple inequality constraints

Initial tests of ANW new in the VIS range; good results ($MAPD < 20\%$)

Task III. Refine ADG$_{2019}$ partitioning model

Stramski et al. 2019

- Assemble UV-VIS absorption dataset (multiple inclusion/exclusion criteria)
- Extrapolation method for $a_g(\lambda)$, $a_{dg}(\lambda)$, and $a_{d}(\lambda)$ from the VIS to UV

Next tasks:

- Refine a library of spectral shapes for ADG and ANW models
- Integrate the UV extrapolation method with ADG and ANW models

Evaluation results for extrapolated relative to measured values in the UV:

- Median ratio ($MdR – solid line$) shows negligible aggregate bias
- Median absolute percent difference ($MdAPD – dashed line < 5\%$)