HARP2 Level-1 Data Processing Plan

Xiaoguang (Richard) Xu, J. Vanderlei Martins, Anin Puthukkudy, Noah Sienkiewicz, Brent McBride, Rachel Smith, Roberto Fernandez Borda, and Lorraine Remer

Acknowledgement: Bryan Franz, Meng Gao, Fred Patt, Sean Bailey, and Joel Gales

October 2021
Outline

- HARP2 instrumentation and technology
- HARP2 level-1 data categories
- Hyper-angle Image Processing Pipeline (HIPP)
- Demonstration of HARP L1A/B/C data structure
- HARP2 proxy data
 - HARP CubeSat data products
 - AirHARP field data products
 - Planned synthetic PACE/HARP2 L1 data
The HARP2 instrument

- Three 2048 x 2048 CCD detectors with polarization angles of 0°, 45°, and 90°
- 4 spectral bands (FWHM): 441 (15), 549 (12), 669 (16), 873 (43) nm
- Cross track FOV: 94°, spans a 1555 km swath with ~3 km binned resolution at nadir, 2-day global coverage
- Along-track FOV: 114°, splitting into 60 along-track view angles for the 669 nm band, 10 angles for each of the other 3 bands
- Onboard lunar and solar calibrations
- Polarization accuracy: DoLP < 0.01
Multi-Angle Observation

No sunglint

Sunglint peak

Multiple Angles
HARP2 Level-1 Data Processing Flow

HARP2 Level 1 data types

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>5-min reconstructed, unprocessed instrument data (digital counts from three detectors) at full resolution, time-referenced, and annotated with the spacecraft ephemeris and attitude data.</td>
</tr>
<tr>
<td>1beta</td>
<td>Geo-located, topographically corrected instrument data at full resolution in the detector frame. Radiance data remain in digital count units but with initial corrections applied. (L1beta data are not intent for public distribution.)</td>
</tr>
<tr>
<td>1B</td>
<td>Geo-registered, radio-polarimetrically calibrated data (i.e., Stokes-vector parameters I, Q, U) in radiance units for individual HARP2 view angles (pushbroom images) at native spatial resolution. 5-min granule</td>
</tr>
<tr>
<td>1C</td>
<td>Co-located and co-registered radiance data for all HARP2 observation angles at a given fixed geographical grid. 5-min granule based on nadir view.</td>
</tr>
</tbody>
</table>
HIPP processing flow for HARP/HARP2 (1)

Level 1A to level 1beta

Geolocation: Images are projected to ground altitude for each of three CCDs:
- ZEMAX CCD camera geometries calibrated with real captures
- Various coordinate transformations
- WGS84 ellipsoid + 1-arc-min ETOP01 DEM
- Iterative terrain correction

Initial CCD image corrections:
- Dark current: temperature dependent
- Defect mask for hot/defect pixels
- Non-linear CCD response correction
- Flat fielding and CCD fringe corrections

HIPP = Hyper-angle Image Processing Pipeline
HIPP processing flow for HARP/HARP2 (2)

- Extract lines of each filter strip (view angle) and stitch them together to form pushbroom images for each CCD
- Collocate pushbrooms for the 3 CCDs
 - L1B: register to a reference CCD
 - L1C: Pre-determined L1C grids
- Convert resampled/gridded DCs to radiances for pushbrooms of each view angle and rotated to view meridional plane

\[
\begin{bmatrix}
I \\
Q \\
U
\end{bmatrix} = \begin{bmatrix}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{bmatrix}^{-1}
\begin{bmatrix}
DC1 \\
DC2 \\
DC3
\end{bmatrix}
\]
HARP L1A Data Structure

Movie of HARP L1A images acquired on 05/03/2020

CCD1 (P0)
CCD2 (P45)
CCD3 (P90)
Demonstration with a HARP CubeSat L1A file

Click here to view the demonstration of HARP CubeSat L1A file: https://photos.app.goo.gl/cM9BQozpztPs7tYy5
HARP L1B Data Structure

Level 1B netCDF4

- root
 - Global Attributes
 - blue
 - green
 - red
 - nir

- green Attributes
- green Dimensions

- View01
 - Latitudes(x,y)
 - Longitudes(x,y)
 - I(x,y)
 - QFlag(x,y)
 - View01 Attrs
 - View01 Dims

- View02

- View10
Demonstration with a HARP CubeSat L1B file

Click here to view the demonstration of HARP CubeSat L1B file:
https://photos.app.goo.gl/Y3Beo3eWwmGoJAA96
HARP L1C Data Structure

Level 1C netCDF4

- **root**
 - **Global Attributes**
 - **Global Dimensions**
 - **Coordinates**
 - **Coord Attributes**
 - Latitudes(x,y)
 - Longitudes(x,y)
 - Altitudes(x,y)
 - LandMask(x,y)
 - **blue**
 - **green**
 - **green Attributes**
 - green views
 - I(x,y,views)
 - Q(x,y,views)
 - U(x,y,views)
 - QFlag(x,y,views)
 - **red**
 - **nir**
 - **Data variables**

Red Angle: +053.76
Green Angle: +054.49
Blue Angle: +051.92
Demonstration with a HARP CubeSat L1C file

Click here to view the demonstration of HARP CubeSat L1C file: https://photos.app.goo.gl/yA5Xqg8HxWT7kNSS6
Proxy HARP2 L1 datasets

- **AirHARP campaign data**
 - AirHARP/ACEPOL L1B: https://www-air.larc.nasa.gov/missions/acepol

- **HARP CubeSat**
 - Deployed from ISS in 2020-02-19
 - Data collection since May 2020
 - Targeted captures

- **Synthetic HARP2 L1B/L1C Data** (under development)
Preliminary quicklook for all science captures are available at https://sites.google.com/umbc.edu/harp/harp-quicklooks

Over 40 successful science captures focusing on clouds, aerosol (dust, smoke), ocean and land surfaces, and vicarious calibrations.

Most of them were collected in May-Sep 2020.

Recent captures have begun after a 6-month ground station maintenance.
Why HARP2 synthetic data?

- Evaluate HARP2 onboard binning schemes that are much more complicated than those of HARP CubeSat
- Help implementation of HARP2 L1 operational processing
- Provide a PACE/HARP2 synthetic test data to the L2 community
Summary

We have introduced

• HARP2 Level 1 data categories
• Hyper-angle Image Processing Pipeline
• L1A, L1B, and L1C HARP2 data format with demonstration
• Available and upcoming HARP2 proxy data

Thank you for your time and attention!
Questions? Shoot me an email at xxu@umbc.edu