Understanding Natural Variability of VSFs and Its Impact on Biogeochemical Retrieval from Ocean Color

Xiaodong Zhang: University of North Dakota
Deric Gray: Naval Research Lab
Wayne Slade: Sequoia Scientific, Inc.
1. Spatial and temporal variability of VSFs

LISST, 532 nm, 32 angles 0.07 – 13.9°
VSM, 532 nm, 0.6:0.3:177.3°
MVSM, 8 wavelengths, 0.5(10):0.25:179°
ECO-VSF, 3 wavelengths, 100, 125, 150°
HydroScat, 6 wavelengths, 140°
Ac-9 or ac-s

LISST+MVSM: 532 nm, complete VSFs 0.07 – 179°
MVSM, ECO, HS6: Spectral b,b
ac meters: Spectral c and a
IOP agreement between different instruments:

\[R > 0.96 \]

\[\text{RMSD} < 10\% \]

\[2\pi \int_{0.9}^{41} \beta(\theta) \sin \theta d\theta \]
2. Biogeochemical sources of b_b: A combination of inverse- and forward-modeling approach by analyzing measured VSFs

VSF-Inverse modeling at 532 nm

<table>
<thead>
<tr>
<th>n</th>
<th>r_{mode}</th>
<th>σ</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.06</td>
<td>0.02</td>
<td>0.3</td>
<td>0.053</td>
</tr>
<tr>
<td>1.02</td>
<td>0.40</td>
<td>0.9</td>
<td>2.149</td>
</tr>
<tr>
<td>1.02</td>
<td>3.20</td>
<td>0.9</td>
<td>0.322</td>
</tr>
<tr>
<td>1.04</td>
<td>3.20</td>
<td>0.3</td>
<td>0.329</td>
</tr>
<tr>
<td>1.06</td>
<td>0.40</td>
<td>0.3</td>
<td>0.327</td>
</tr>
<tr>
<td>1.06</td>
<td>3.20</td>
<td>0.3</td>
<td>0.207</td>
</tr>
<tr>
<td>1.06</td>
<td>0.40</td>
<td>0.5</td>
<td>0.052</td>
</tr>
<tr>
<td>1.20</td>
<td>0.20</td>
<td>0.5</td>
<td>0.039</td>
</tr>
<tr>
<td>1.20</td>
<td>0.40</td>
<td>0.1</td>
<td>0.044</td>
</tr>
<tr>
<td>1.20</td>
<td>0.60</td>
<td>0.1</td>
<td>0.027</td>
</tr>
<tr>
<td>1.20</td>
<td>1.60</td>
<td>0.1</td>
<td>0.148</td>
</tr>
<tr>
<td>1.02</td>
<td>10.00</td>
<td>1.1</td>
<td>0.084</td>
</tr>
</tbody>
</table>

Particle size distributions

- **Forward modeling at other wavelength**

Oceanic particles comprise of sub-populations, each follows log-normal distribution and of the same composition (refract. Index) Zhang et al. (2011)

b_b has been empirically related to many things

b_b vs. PIC

Balch et al. (2005)

b_b vs. POC

Stramski et al. (2008)

b_b vs. Phytoplankton-C

Martinez-Vincente et al. (2013)

b_b vs. SPM

Lorthiois et al. (2012)

b_b slope vs. PSD slope

Kostadinov et al (2012)
Question: what contribute to \(b_b \)?

Dissolved vs. Particulate

\[
\beta = \beta_d + \beta_p
\]

Zhang et al. (2014)

Zhang and Gray (2015)
In coastal waters, “dissolved” portion of particles scatter light much greater than pure seawater and contribute 30-80% of total b_b

Next step: Analyzing SABOR data

D09: Dall’Olmo et al. (2009) equatorial Pacific ocean
SW05: Stramski and Wozniak (2005) simulated colloidal scattering
Simulated vs. measured spectral b_b

Most cases like this

Dinoflagellate bloom
In general, simulation overestimate spectral slopes of b_b, slight overestimation in spectral slopes for b and bb ratio.

In forward modeling, I assumed Refractive index does not change with wavelength. While this is ok for real part of the index, it is NOT ok for imaginary part of the index.

Next step
To account for absorption, i.e., change in imaginary part of the refractive index, in forward modelling for phytoplankton-type and very small (dissolved) particles.
An unexpected challenge in using measured VSFs with HydroLight:

• To ingest measured VSFs, HL does this things
 • Estimate VSFs at 0.1:0.1:180 through interpolation or extrapolation with a user provided function
 • Estimate VSF slope at smaller angles using the measurements at 0.1 and 0.2 deg assuming
 \[\beta(\theta) \approx \beta(0.1)\theta^{-m} \]
 • Analytically integrate VSF between 0 and 0.1 using the above equation and between 0.1 and 180 numerically.

This only works if m < 2; otherwise you get negative integration value between 0 and 0.1, which in turn lowers the estimate b, increases bb ratio.