Derivation of Inherent Optical Properties from Satellite Top of Atmosphere Measurements in Optically Complex Waters

Principal Investigator
Susanne Craig, Canadian Space Agency
(Dalhousie University)

Collaborators
Zhongping Lee, University of Massachusetts, Boston
David Miller, NRL
TOA EOF-Based Algorithms for IOPs

1. TOA Reflectance

2. EOF analysis

3. Model to estimate IOPs/Chl

- Evolution of an approach developed for in situ hyperspectral data
- Intended to circumvent the need for ‘perfect’ atmospheric correction in challenging scenarios (coastal/optically complex waters)
- Initially tested on multispectral NOMAD satellite matchup dataset
Synopsis of Progress

- TOA synthetic dataset was constructed using coupled atmosphere-ocean model - Zhongping Lee & team
 - a_{ph} spectra collected from SEABASS
 - Other IOPs modelled using similar approach to IOCCG Report #5
 - Good representation of ‘real’ world measured IOPs
- Parameters varied: a_{ph}, a_g, a_d, b_{bph}, b_{bd}, AOD (τ), absorbing aerosols (O_3, O_2, water vapour), sza
Synopsis of Progress

\[
\begin{align*}
\tau &= 0.1 \\
\tau &= 0.3 \\
\tau &= 0.5 \\
\tau &= 0.8
\end{align*}
\]

TOA R_{rs}

Approach performs well for IOPs over a wide range of water constituent concentrations & AODs with absorbing gases present.
Challenges

- EOF approach applied to *in situ* hyperspectral reflectance revealed potential problems with objective score selection criteria.
- Occasionally, higher order scores that are essentially noise are selected as predictors - *likely instrumental*.
- Gives rise to spectral discontinuities (spikes) in modelled spectral parameters.
- Currently experimenting with methods to identify and eliminate this problem (e.g. signal:noise criterion).

EOF approach implemented to detect cyanobacteria blooms in the Baltic Sea

Figure courtesy of Monika Woźniak: Woźniak, Craig, et al. in review.
Recent Developments - Machine Learning

- EOF approach is essentially a basic form of machine learning
- Have recently begun a collaboration with computer scientist, Thomas Trappenberg (Dalhousie University)
- Exploring the possibility of using machine learning techniques commonly applied to other image classification problems
- State of the art machine learning now tries to use as much data as possible:
 - Don’t try to be too clever initially - more (imperfect) data may still contain useful information!
 - Pre-training approaches help to constrain the final model
Recent Developments - Machine Learning

- Different ‘flavours’ of machine learning algorithms were applied to the TOA NOMAD dataset originally used for developing the EOF models
 - Multilayer perceptron neural network
 - Convolutional neural network
 - Convolutional neural network with pre-training
Examples of Machine Learning Prediction of α_{ph}

TOA EOF Algorithm

Machine Learning Approaches

Multilayer Perceptron Neural Network (1 hidden layer)

Multilayer Perceptron Neural Network (2 hidden layers)

5 Layer Convolutional Network

Pre-training 5 Layer Convolutional Network

Models developed in Trappenberg Lab: Hossein Parvar, Yoshima Kibu

PACE Science Team Meeting 17-19 January 2017 - Harbor Branch Oceanographic Institute, FAU, FL
Examples of Machine Learning Prediction of α_{ph}

Model Skill Metrics

c.f. model skill metrics used by Werdell et al. (2013), AO, 52(10), 2019.
Preliminary Machine Learning Results

- Machine learning approaches are able to replicate and slightly improve upon EOF TOA results
- These models were developed with ‘bare bones’ information - TOA spectra & corresponding IOPs
- Provision of metadata for each of the data points may improve models further (e.g. lat, lon, season, sza,...) - the more data the better!
- ‘Unlabelled’ data (i.e. spectra without accompanying IOPs) may also be used to improve the models
- Compiled hyperspectral PACE dataset could prove an excellent test case
Questions...?