Improving Retrieval of IOPs from Ocean Color Remote Sensing Through Explicit Consideration of the Volume Scattering Function

PI: Mike Twardowski
Co-I: Jim Sullivan
Contributors: Alberto Tonizzo, Nicole Stockley, Scott Freeman, Matt Slivkoff
Summary of Project Objectives

✓ • VSF shape analysis
✓ • IOP-AOP closure analysis with *almost* fully parameterized, high quality data sets
• Performance assessment of radiative transfer approximations with explicit consideration of the VSF

3-Y project initiated Sep 2015
Closure and uncertainty assessment for ocean color reflectance using measured volume scattering functions and reflective tube absorption coefficients with novel correction for scattering

ALBERTO TONIZZO,1 MICHAEL TWARDOWSKI,2* SCOTT MCLEAN,3 KEN VOSS,4 MARLON LEWIS,5 AND CHARLES TREES6

1GTF LLC, 30-77 31st St. #1, Astoria, New York 11102, USA
2Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Ft. Pierce, Florida 34946, USA
3Ocean Networks Canada Innovation Centre, University of Victoria, 2300 McKenzie Avenue, Victoria, British Columbia V8W 2Y2, Canada
4Physics Department, University of Miami, Miami, Florida 33146, USA
5Department of Marine Science, Dalhousie, Halifax, Nova Scotia, Canada
6Centre for Marine Research and Exploration, La Spezia, Italy
*Corresponding author: mtwardowski@fau.edu

Received 6 September 2016; revised 23 November 2016; accepted 23 November 2016; posted 30 November 2016 (Doc. ID 274965); published 0 MONTH 0000
<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
<th>Formula for Scattering Error, $\varepsilon(\lambda)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td>Measured absorption at 715 nm reference wavelength assumed to be 100% scattering error (i.e., assumes no real absorption in the near-R). Error assumed spectrally constant.</td>
<td>$a_m(715)$</td>
</tr>
<tr>
<td>PROP</td>
<td>Measured absorption at 715 nm reference wavelength assumed to be 100% scattering error. Error is scaled spectrally by the ratio of measured total scattering ($\epsilon - a$) (i.e., assuming that the ratio of scattering error to total scattering is constant spectrally).</td>
<td>$a_m(715) \frac{c_m(\lambda) - a_m(\lambda)}{c_m(715) - a_m(715)}$</td>
</tr>
<tr>
<td>VSF98P</td>
<td>Scattering error is independently derived by convolving measured VSF β with angular weighting function \mathcal{W}_ϵ of the scattering error for WET Labs ac device reflective tube modeled in McKee et al. [15]. Weighting function associated with 98% tube reflectivity is applied after Stockley et al. [13]. Error is scaled spectrally according to the PROP method.</td>
<td>$2\pi \int_0^\pi \sin(\theta) \mathcal{W}_\epsilon(\theta) \beta(\theta, 658) d\theta \frac{c_m(\lambda) - a_m(\lambda)}{c_m(650) - a_m(650)}$</td>
</tr>
</tbody>
</table>

*Scattering errors are subtracted from measured absorption a_m.
RRS match ups
24 stations, all wavelengths measured VSFs

• About half of error coming from reflectance measurements in match ups, other half from IOP measurement uncertainties, RT modeling
• Closure uncertainties associated with IOPs roughly consistent with aggregate uncertainties of measurement inputs
• Uncertainties for specific cases, particularly Ligurian Sea data set, was larger than could be explained by aggregate uncertainties on measurements
• Up to 25% bias uncertainty in the blue observed in very clear waters, even with current state-of-the-art methods
• Using Fournier-Forand analytical phase functions only increased absolute bias by 3% relative to using measured phase functions
• Lack of polarization in Hydrolight RT modeling may account for unexplained uncertainties

Backscattering and absorption effects on asymptotic light fields in seawater

Alberto Tonizzo¹ and Michael Twardowski²,*

¹GTF LLC, 30-77 31st St. #1, Astoria, NY, USA 11102
²Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 N, Ft. Pierce, FL, USA 34946
*mtwardowski@fau.edu

In prep, Optics Express

• Light field in asymptotic regime not dependent on incident light field, i.e., described only by IOPs
• Relationships between asymptotic light field structure and IOPs may be used to develop new ocean color algorithms
Average cosine of asymptotic light field

- Modeled with Hydrolight
- Full range of Fournier-Forand phase functions ($1.02 \leq n \leq 1.24$; $3.2 \leq \gamma \leq 4.0$) and b_b/a
- 4^{th} order polynomial fit has 2.6% absolute error
- Consistent with Berwald et al. (1995)

Tonizzo and Twardowski, in prep
Performance assessment of Zaneveld (1995) algorithm

24 stations total (same as Tonizzo et al. 2017)
Uses constant empirical $\beta(\theta) / b_b$ relationship derived in Sullivan and Twardowski [2009]
Match up results, Zaneveld algorithm

<table>
<thead>
<tr>
<th>vs. R_{RS} measured</th>
<th>%RMSE</th>
<th>%BIAS$_{abs}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meas β</td>
<td>single β/b_b</td>
</tr>
<tr>
<td>Hydrolight</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>RT approx.</td>
<td>31</td>
<td>32</td>
</tr>
</tbody>
</table>

Performance of Zaneveld analytical approximation was equivalent to full RT simulations for a broad range in water types, even with single shape for β_p / b_{bp}.

Remarkable!
Next steps...

- Submit asymptotic light field manuscript
- Continue work on PACE IOP manuscript
- Continue performance assessment of RT approximations with explicit consideration of the VSF

Thank you